The option effect allows short circuiting of programs for optional values. It includes two basic operations: option and non.

There needs to be implicit evidence of MonadFilter[M[_]] for any runtime M[_] used in its interpretation due to contraints placed by this effect. Short-circuiting with none does not mean that you’ll end up with a None value at some point. The final value in case of short-circuiting is determined by the MonadFilter[M[_]]#empty for your target runtime M[_].


option allows a value of type Option[_] to be lifted into the context of FreeS. If a None is found the program will short circuit.

import freestyle._
// import freestyle._

import freestyle.implicits._
// import freestyle.implicits._

import freestyle.effects.option._
// import freestyle.effects.option._

import freestyle.effects.option.implicits._
// import freestyle.effects.option.implicits._

import cats.implicits._
// import cats.implicits._

def programNone[F[_]: OptionM] =
  for {
    a <- FreeS.pure(1)
    b <- OptionM[F].option[Int](None)
    c <- FreeS.pure(1)
  } yield a + b + c
// programNone: [F[_]](implicit evidence$1: freestyle.effects.option.OptionM[F])cats.free.Free[[β$0$]cats.free.FreeApplicative[F,β$0$],Int]

// res0: Option[Int] = None

If a Some(_) is found, the value is extracted and lifted into the context and the programs resumes normally.

def programSome[F[_]: OptionM] =
  for {
    a <- FreeS.pure(1)
    b <- OptionM[F].option(Some(1))
    c <- FreeS.pure(1)
  } yield a + b + c
// programSome: [F[_]](implicit evidence$1: freestyle.effects.option.OptionM[F])cats.free.Free[[β$0$]cats.free.FreeApplicative[F,β$0$],Int]

// res1: Option[Int] = Some(3)


none immediately short circuits the program without providing further information as to what the reason is. Handle with care.

def programNone2[F[_]: OptionM] =
  for {
    a <- FreeS.pure(1)
    b <- OptionM[F].none[Int]
    c <- FreeS.pure(1)
  } yield a + b + c
// programNone2: [F[_]](implicit evidence$1: freestyle.effects.option.OptionM[F])cats.free.Free[[β$0$]cats.free.FreeApplicative[F,β$0$],Int]

// res2: Option[Int] = None